IMPROVING THE ACCURACY OF PRICE MONITORING FOR CONSTRUCTION MATERIALS AND THE ROLE OF INFORMATION TECHNOLOGY IN THIS PROCESS
Abstract
This article addresses the problem of improving the accuracy of price monitoring for construction materials under conditions of data fragmentation, frequent market fluctuations and limited resources. The study justifies a comprehensive approach that combines optimized sampling of price offers, the implementation of regional price indices, automated data collection, the application of machine learning algorithms and a multi-level data quality verification system. The methodology proposed in this paper ensures the reliability, efficiency and adaptability of price monitoring in the face of dynamic market conditions. A key contribution of the study is the development of a methodology for forming regional price indices based on representative materials and regional market characteristics. The approach includes collecting and classifying data by material groups, calculating weighted regional averages and integrating the results into cost estimation software. The study also highlights the importance of predictive modeling using machine learning to capture non-linear price dynamics and forecast short-term trends with high precision. These models are especially useful when planning procurement strategies under uncertainty and during periods of rapid inflation. The proposed solution addresses challenges such as inconsistent data sources, lack of standardization, limited frequency of updates, and insufficient real-time responsiveness of traditional monitoring systems. The automation of quality control processes through syntax checking, anomaly detection, source consistency validation, and relevance scoring plays a central role in improving data integrity. These mechanisms significantly reduce the influence of erroneous entries and enhance the credibility of price analyses. The findings support the need for integrated digital monitoring systems capable of dynamically adjusting to market conditions while maintaining methodological transparency. Further research should focus on refining predictive models, extending the range of monitored materials and exploring scalable tools for real-time data acquisition and verification.
References
Січний С. Б. Управління вартістю матеріально-технічних ресурсів підприємствами при будівництві об’єктів для державного замовника : дис….канд. екон. наук : 08.00.04. Київ, 2021. 241 с.
Xiong S., Nie C., Lu Y., Zheng J. Research on price prediction of construction materials based on VMD-SSA-LSTM. Applied Sciences. 2025. Vol. 15. No. 4. DOI: https://doi.org/10.3390/app15042005
Chen X., Chang-Richards A.Y., Pelosi A., Jia Y., Shen X., Siddiqui, M.K. and Yang, N. Implementation of technologies in the construction industry: a systematic review. Engineering, Construction and Architectural Management. 2022. Vol. 29. No. 8. Pp. 3181-3209. DOI: http://dx.doi.org/10.1108/ECAM-02-2021-0172
Попик Б. Б. Сучасні системи моніторингу цін на матеріальні ресурси у будівництві: принципи роботи та виклики. Економіка та суспільство. 2024. № 64. DOI: https://doi.org/10.32782/2524-0072/2024-64-33
CheckPrice. Актуальні ціни будівельних матеріалів. Система моніторингу цін на будівельні матеріали в Україні. URL: https://checkprice.com.ua (дата звернення: 10.03.2025).
ДП «ДерждорНДІ». Моніторинг цін на матеріали. Інформація про ціни на основні дорожньо-будівельні матеріали. URL: https://nidi.org.ua (дата звернення: 10.03.2025).
Sichnyi S. Economic efficiency of determining the market price of construction resources within the limited budget. Three Seas Economic Journal. 2020. Vol. 1(4), pp. 133-138. DOI: https://doi.org/10.30525/2661-5150/2020-4-19
Tayefeh Hashemi S., Ebadati O.M., Kaur,= H. Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Applied Sciences. 2020. Vol. 2. 1703. DOI: https://doi.org/10.1007/s42452-020-03497-1
Raja, K.A.Karthick & Murali, Dr.K. Resource Management In Construction Project. International Journal of Scientific and Research Publications (IJSRP). 2020. Vol. 10, pp. 252-259. DOI: http://dx.doi.org/10.29322/IJSRP.10.05.2020.p10130
Sichnyi S. B. (2021). Upravlinnia vartistiu materialno-tekhnichnykh resursiv pidpryiemstvamy pry budivnytstvi obiektiv dlia derzhavnoho zamovnyka [Management of the cost of material and technical resources by enterprises during the construction of facilities for the state customer]: dys….kand. ekon. nauk : 08.00.04. Kyiv, 2021. 241 p. (in Ukrainian)
Xiong S., Nie C., Lu Y., Zheng, J. (2025). Research on Price Prediction of Construction Materials Based on VMD-SSA-LSTM. Applied Sciences, мщдю 15(4). DOI: https://doi.org/10.3390/app15042005
Chen X., Chang-Richards A.Y., Pelosi A., Jia Y., Shen X., Siddiqui M.K., Yang, N. (2022). Implementation of technologies in the construction industry: a systematic review. Engineering, Construction and Architectural Management, vol. 29, no. 8, pp. 3181-3209. DOI: http://dx.doi.org/10.1108/ECAM-02-2021-0172
Popyk B. B. (2024). Suchasni systemy monitorynhu tsin na materialni resursy u budivnytstvi: pryntsypy roboty ta vyklyky [Modern systems for monitoring market prices of construction resources: operating principles and challenges]. Ekonomika ta suspilstvo, no. 64. DOI: https://doi.org/10.32782/2524-0072/2024-64-33 (in Ukrainian)
CheckPrice. Aktualni tsiny budivelnykh materialiv. Systema monitorynhu tsin na budivelni materialy v Ukraini [CheckPrice. Actual prices of construction materials. Price monitoring system for building materials in Ukraine]. Available at: https://checkprice.com.ua (accessed March 10, 2025)
DP «DerzhdorNDI». Monitorynh tsin na materialy. Informatsiia pro tsiny na osnovni dorozhno-budivelni materialy [SE «DerzhdorNDI». Monitoring of prices for materials. Information on prices for main road construction materials]. Available at: https://nidi.org.ua (accessed March 10, 2025)
Sichnyi S. (2020). Economic efficiency of determining the market price of construction resources within the limited budget. Three Seas Economic Journal, vol. 1(4), pp. 133-138. DOI: https://doi.org/10.30525/2661-5150/2020-4-19
Tayefeh Hashemi S., Ebadati O.M., Kaur, H. (2020). Cost estimation and prediction in construction projects: a systematic review on machine learning techniques. SN Applied Sciences, vol. 2, 1703. DOI: https://doi.org/10.1007/s42452-020-03497-1
Raja K.A.Karthick, Murali Dr.K. (2020). Resource Management In Construction Project. International Journal of Scientific and Research Publications (IJSRP), vol. 10, pp. 252-259. DOI: http://dx.doi.org/10.29322/IJSRP.10.05.2020.p10130